Python Pandas Series.clip() Method
In this tutorial, we will learn the python pandas Series.clip()
method. Using this method we can limit or trim the values present in Series by specifying the input thresholds which can be singular values or array. It returns Series by replacing values that are outside the clip boundaries and None if inplace=True
.
The below shows the syntax of the Series.clip()
method.
Syntax
Series.clip(lower=None, upper=None, axis=None, inplace=False, *args, **kwargs)
Parameters
lower: It represents the float or array_like, the default value is None. It represents the minimum threshold value and all values below this threshold will be set to it.
upper: It represents the float or array_like, the default value is None. It represents the maximum threshold value. All values above this threshold will be set to it.
inplace: It represents the bool(True or False), and the default value is False. Whether to perform the operation in place on the data.
*args, **kwargs: It is the additional keywords that have no effect but might be accepted for compatibility with NumPy.
Example: Series.clip()
method with a upper
threshold
Here, in this example, we are trimming the Series values using the Series.clip()
method with the upper
threshold. We set the upper threshold value to 4
and the Series.clip()
method trims the values which are above the threshold value and set them to the threshold value. See the below example.
#importing pandas library
import pandas as pd
series = pd.Series([8,3,-6,4.5])
print("------Series--------")
print(series)
print("------After clipping the Series--------")
print(series.clip(upper=4))
------Series--------
0 8.0
1 3.0
2 -6.0
3 4.5
dtype: float64
------After clipping the Series--------
0 4.0
1 3.0
2 -6.0
3 4.0
dtype: float64
Example: Series.clip()
method with a lower threshold
Here, in this example, we are trimming the Series values using the Series.clip()
method with the lower
threshold. We set the lower
threshold value to 4
and the Series.clip()
method trims the values which are below the threshold value and set them to the threshold value. See the below example.
#importing pandas library
import pandas as pd
series = pd.Series([5,2,-6,3])
print("------Series--------")
print(series)
print("------After clipping the Series--------")
print(series.clip(lower=4))
------Series--------
0 5
1 2
2 -6
3 3
dtype: int64
------After clipping the Series--------
0 5
1 4
2 4
3 4
dtype: int64
Example: Series.clip()
method with a upper
and lower
threshold
We can specify both the lower and upper threshold in the Series.clip()
method and this method trims the Series values according to the specified lower
and upper
threshold values. See the below example.
#importing pandas library
import pandas as pd
series = pd.Series([8,-6,6,-1])
print("------Series--------")
print(series)
print("------After clipping the Series--------")
print(series.clip(-1,5))
------Series--------
0 8
1 -6
2 6
3 -1
dtype: int64
------After clipping the Series--------
0 5
1 -1
2 5
3 -1
dtype: int64
Example: Set inplace=True
in Series.clip()
method
Here, in this example, we set inpace=True
in the Series.clip()
method. The Series.clip()
method trims values but it will not return a new object as the parameter inplace is set to True instead it returns None
. See the below example.
#importing pandas library
import pandas as pd
series = pd.Series([8,-6,6,-1])
print("------Series--------")
print(series)
print("------After clipping the Series--------")
print(series.clip(-1,5,inplace=True))
------Series--------
0 8
1 -6
2 6
3 -1
dtype: int64
------After clipping the Series--------
None
Conclusion
In this tutorial, we learned the Series.clip()
method. We learned the syntax, parameters and by solving different examples we understood the Series.clip()
method.