Pandas DataFrame pad() Method
In this tutorial, we will learn the Python pandas DataFrame.pad()
method. This method is similar to the DataFrame.fillna()
method and it fills NA/NaN values using the ffill() method.
It returns the DataFrame object with missing values filled or None
if inplace=True
.
The below shows the syntax of the DataFrame.pad()
method.
Syntax
DataFrame.pad(axis=None, inplace=False, limit=None, downcast=None)
Parameters
axis: It represents index or column axis, '0' for index and '1' for the column. When the axis=0
, method applied over the index
axis and when the axis=1
method applied over the column
axis
inplace: It represents bool(True or False), and the default value is False. If True, it fills in-place and returns None.
limit: int, default None. If the method is specified, this is the maximum number of consecutive NaN values to forward fill.
Example 1: Fill the missing values in pandas Dataframe
Here, by using the DataFrame.pad()
method, we can fill all null values or missing values in the DataFrame. It fills the missing values by using the ffill
method of pandas.
#importing pandas as pd
import pandas as pd
#importing numpy as np
import numpy as np
df = pd.DataFrame([[2, np.nan, 0],[np.nan, np.nan,5],[np.nan,3,np.nan]],columns=list('ABC'))
print("-----The DataFrame is-----")
print(df)
print("-----Filling Nan values------")
print(df.pad(axis=0))
-----The DataFrame is-----
A B C
0 2.0 NaN 0.0
1 NaN NaN 5.0
2 NaN 3.0 NaN
-----Filling Nan values------
A B C
0 2.0 NaN 0.0
1 2.0 NaN 5.0
2 2.0 3.0 5.0
Example 2: Fill the missing values in pandas Dataframe
This example is similar to the previous one, here DataFrame.pad()
method fills the null values along the column axis.
#importing pandas as pd
import pandas as pd
#importing numpy as np
import numpy as np
df = pd.DataFrame([[2, np.nan, np.nan],[np.nan, np.nan,5],[np.nan,3,np.nan]],columns=list('ABC'))
print("-----The DataFrame is-----")
print(df)
print("-----Filling Nan values------")
print(df.pad(axis=1))
-----The DataFrame is-----
A B C
0 2.0 NaN NaN
1 NaN NaN 5.0
2 NaN 3.0 NaN
-----Filling Nan values------
A B C
0 2.0 2.0 2.0
1 NaN NaN 5.0
2 NaN 3.0 3.0
Example 2: Fill the missing values in pandas Dataframe with a limit in Pandas
We can replace the first NaN element using the limit
method in the DataFrame.pad()
method. It will make a limit to replace the elements in the dataframe.
#importing pandas as pd
import pandas as pd
#importing numpy as np
import numpy as np
df = pd.DataFrame([[2, np.nan, np.nan],[np.nan, np.nan,5],[np.nan,3,np.nan]],columns=list('ABC'))
print("-----The DataFrame is-----")
print(df)
print("-----Filling Nan values------")
print(df.pad(axis=1,limit=1))
-----The DataFrame is-----
A B C
0 2.0 NaN NaN
1 NaN NaN 5.0
2 NaN 3.0 NaN
-----Filling Nan values------
A B C
0 2.0 2.0 NaN
1 NaN NaN 5.0
2 NaN 3.0 3.0
Conclusion
In this tutorial, we learned the Python pandas DataFrame.pad()
method. We learned the syntax, parameter and by applying this method on the DataFrame, we solved examples and understood the DataFrame.pad()
method.