Pandas DataFrame info() Method
In this tutorial, we will discuss and learn the Python pandas DataFrame.info()
method. This method can be used to get the summary of a DataFrame. When we apply this method on the DataFrame, it prints information about a DataFrame including the index dtype and columns, non-null values, and memory usage.
The below is the syntax of the DataFrame.info()
method.
Syntax
DataFrame.info(verbose=None, buf=None, max_cols=None, memory_usage=None, show_counts=None, null_counts=None)
Some of the important parameters of the DataFrame.info()
method are,
data: It represents the DataFrame, prints information about it.
verbose: It represents the bool(True or False), which is optional. It indicates whether to print the full summary of the DataFrame or not.
memory_usage: It represents the bool(True or False), which is optional. It specifies whether to display information about the total memory usage of the DataFrame elements that includes the index
show_counts: It represents the bool(True or False), which is optional. It indicates whether to display the non-null counts.
null_counts: It represents the bool(True or False), which is optional.
Example: The DataFrame.info()
Method
The DataFrame.info()
method prints the full summary of the DataFrame. See, how this works in the below example.
import pandas as pd
int_values = [1, 2, 3, 4, 5]
text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
df = pd.DataFrame({"int_col": int_values, "text_col": text_values,"float_col": float_values})
print("----SUMMARY OF THE DATAFRAME IS-----")
print(df.info(verbose=True))
----SUMMARY OF THE DATAFRAME IS-----
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 int_col 5 non-null int64
1 text_col 5 non-null object
2 float_col 5 non-null float64
dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes
None
Example: Set verbose=False
in the DataFrame.info()
Method
Here, we are printing a summary of columns count and their dtypes but not per column information. See the below example.
import pandas as pd
int_values = [1, 2, 3, 4, 5]
text_values = ['alpha', 'beta', 'gamma', 'delta', 'epsilon']
float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
df = pd.DataFrame({"int_col": int_values, "text_col": text_values,"float_col": float_values})
print("----SUMMARY OF THE DATAFRAME IS-----")
print(df.info(verbose=False))
----SUMMARY OF THE DATAFRAME IS-----
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Columns: 3 entries, int_col to float_col
dtypes: float64(1), int64(1), object(1)
memory usage: 248.0+ bytes
None
Example: The DataFrame.info()
Method
When we set parameter null_counts=False,
the DataFrame.info()
method prints the full summary of the DataFrame by excluding the null counts. See the below example.
import pandas as pd
import numpy as np
int_values = [np.nan,np.nan,np.nan,np.nan,np.nan]
text_values = ['alpha', 'beta', 'gamma','delta', 'epsilon']
float_values = [0.0, 0.25, 0.5, 0.75, 1.0]
df = pd.DataFrame({"int_col": int_values, "text_col": text_values,"float_col": float_values})
print("----SUMMARY OF THE DATAFRAME IS-----")
print(df.info(verbose=True,null_counts = False))
----SUMMARY OF THE DATAFRAME IS-----
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5 entries, 0 to 4
Data columns (total 3 columns):
# Column Dtype
--- ------ -----
0 int_col float64
1 text_col object
2 float_col float64
dtypes: float64(2), object(1)
memory usage: 248.0+ bytes
None
Conclusion
In this tutorial, we learned the Python pandas DataFrame.info()
method. We learned the syntax and by applying this method on the DataFrame with some examples.