For sin specifically, using Taylor expansion would give you:
sin(x) := x - x^3/3! + x^5/5! - x^7/7! + ... (1)
you would keep adding terms until either the difference between them is lower than an accepted tolerance level or just for a finite amount of steps (faster, but less precise). An example would be something like:
float sin(float x)
{
float res=0, pow=x, fact=1;
for(int i=0; i<5; ++i)
{
res+=pow/fact;
pow=-1*x*x;
fact*=(2*(i+1))*(2*(i+1)+1);
}
return res;
}
Note: (1) works because of the aproximation sin(x)=x for small angles. For bigger angles you need to calculate more and more terms to get acceptable results. You can use a while argument and continue for a certain accuracy:
double sin (double x){
int i = 1;
double cur = x;
double acc = 1;
double fact= 1;
double pow = x;
while (fabs(acc) > .00000001 && i < 100){
fact *= ((2*i)*(2*i+1));
pow *= -1 * xx;
acc = pow / fact;
cur += acc;
i++;
}
return cur;
}